
Computer Graphics Summary

Adrian Hirt

January 2023

1 Light & matter

1.1 Light emission

A incandescent light source produces visible light from heat (e.g. an old-fashioned light bulb).

A blackbody is a hypothetical body that absorbs all wavelengths of thermal radiation. They do not reflect
light and therefore appear black if their temperatures are low enough. When heated to a given temperature,
they will emit thermal radiation with the same spectrum. In a perfect blackbody, the color spectrum is defined
purely by the temperature of the material, given by Plank’s law.

On the other hand, luminescence is emission of light by a substance not resulting from heat, e.g. from chemical
reactions, electrical energy, subatomic motions or stress on a crystal.

1.2 Quantifying light

1.2.1 Radiometry

Visible light is any radiation capable of directly causing visual sensation, in the wavelengths of 390 to 700nm.

We assume light consists of photons with:

• x: Position

• −→ω : Direction of travel

• λ: Wavelength

Each photon has an energy of hc
λ Joules with h being Plank’s constant and c the speed of light in vacuum.

We also have the following quantities (which depend on the wavelength):

Flux (Radiant Flux, Power), which is the total amount of radiant energy passing through a surface or space
per unit time. Examples would be number of photons hitting a wall per second or number of photons leaving a
lightbulb per second:

Φ(A)
[J
s
= W

]

Irradiance is the area density of flux, i.e. flux per unit area arriving at a surface. An example is the number
of photons hitting a small patch of a wall per second, divided by size of patch:

E(x) =
dΦ(A)

dA(x)

[W
m2

]

Radiosity (Radiant Exitance) is again the area density of flux, however here it’s the flux per unit area leaving
a surface. An example is the number of photons reflecting off of a small patch of a wall per second, divided by
size of patch:

B(x) =
dΦ(A)

dA(x)

[W
m2

]

1

Radiant Intensity is the directional density of flux, i.e. the power (flux) per solid angle. An example is
the power per unit solid angle emitting from a point source.

I(−→ω) =
dΦ

d−→ω

[W
sr

]
The solid angle is the ”extension” of the measurement of an angle (for circles) to spheres. For a sphere, the
angle is defined as the arclength l over the radius r: θ = l

r . For a sphere, the solid angle is defined as the area

A over the radius r squared: Ω = A
r2 .

To get the flux, we can integrate the radiant intensity over the area of the sphere S:

Φ =

∫
S2

I(−→ω)d−→ω

If we have an isotropic light source (emits light same in all direction) we have a radiant intensity of I = Φ
4πsr for

each direction.

Radiance is the intensity per perpendicular unit area, i.e. the flux density per unit solid angle, per perpendicular
unit area:

L(x,−→ω) =
dI(−→ω)

dA⊥(x,−→ω)
=

d2Φ(A)

d−→ω dA(x)cosθ

[W

m2sr

]
Lambert’s Cosine Law describes that an angled surface A has a smaller Irradiance E than an ”unangled”
surface, because the Flux is distributed over a larger area:

We can express the incident radiance Li at one point as the outgoing radiance Lo at another point:

With this, we can express irradiance in terms of radiance by integrating over the hemisphere:∫
H2

L(x,−→ω)cosθd−→ω = E(x)

2 Shape representation

2.1 Parametric representation

A circle is represented by the formula

p(t) = r(cos(t), sin(t)) t ∈ [0, 2π)

A sphere is represented by the formula

s(u, v) = r(cos(u)cos(v), sin(u)cos(v), sin(v)) (u, v) ∈ [0, 2π)× [
−π

2
,
π

2
]

2

2.2 Implicit representation

Implicit representations of shapes are formulas, that when evaluate to zero, describe the points on the surface
of their respective shape.
A circle is represented as:

f(x, y) = x2 + y2 − r2

A sphere is represented as:
f(x, y, z) = x2 + y2 + z2 − r2

To compute the normal vector of the surface, we take the gradient of the implicit function:

∇f(x, y, z) = (
df

dx
,
df

dy
,
df

dz
)T

We can also have the following boolean set operations (for functions fi):
Union: ∪fi(x) = minfi(x)
Intersection: ∩fi(x) = maxfi(x)
Subtraction of f from g: h = max(g,−f)

3 Polygonal Meshes

3.1 Manifolds

A surface is a closed 2-manifold if it is everywhere locally homeomorphic to a disk, i.e. you can place an
infinitesimally small disk on any point of the surface and the surface would be equivalent to the disk. This means
there are no ”fold overs” or self-intersections.

A manifold with boundary means that the surface has a boundary, with each boundary point being homeo-
morphic to a half-disk.

In a manifold mesh, there are at most 2 faces sharing an edge. Boundary edges have one incident face,
inner edges have two incident faces. If the manifold is closed and not intersecting, it divides the space into inside
and outside.

The Genus of a manifold is 0.5× the maximal number of closed paths that do not disconnect the graph.
Informally, the number of handles (”donut holes”).

3.2 Triangulation

A triangulated mesh is a polygonal mesh where every face is a triangle. Simplifies operations & storage. Any
polygon can be triangulated.

4 Appearance modelling

4.1 BRDF

A Bidirectional Reflectance Distribution Function provides a relation between incident radiance and
differential reflected radiance. From this, we can derive the Reflection Equation:∫

H2

fr(x,
−→ω i,

−→ω r)Li(x,
−→ω i)cosθid

−→ω i = Lr(x,
−→ω r)

with H2 meaning we integrate over the hemisphere, fr being the BRDF, Li the incident radiance and cosθ the
term from Lambert’s cosine law.
The Reflection Equation describes a local illumination model, i.e. the reflected radiance due to incident illumi-
nation from all directions.

3

4.2 Lambertian Diffuse BRDF

For Lambertian Reflection, the BRDF is a constant, which means the Reflection Equation can be written as:

Lr(x) = frE(x)

with fr = 1
π . For diffuse reflectance (albedo) p ∈ [0..1] we have fr = p

π , with p = 0 meaning that all energy is
absorbed, and p = 1 meaning that all energy is reflected.

4.3 Ideal Specular Reflection

Here, we have angle of incident direction = angle of reflected direction (in relation to the surface normal).

4.4 Ideal Specular Refraction

Snell’s Law describes the relation between the incident direction −→ω with angle θ1 and the refracted direction
−→ω t with angle θ2 as:

η1sinθ1 = η2sinθ2

with eta1 and eta2 being the index of refraction of the two medias.

5 Ray tracing

5.1 Assumptions

• No diffraction, no polarization, no interference

• Light travels in a straight line in a vacuum

• Discrete-wavelength approximation of color (RGB)

5.2 Basics

A Ray r is parametrized by an origin o and a direction d as: r(t) = o+ td.

In Light Tracing, we shoot out rays from light sources and measure the rays hitting the camera point. This is
inefficient, as most rays don’t hit the camera, and therefore we use Camera Tracing. Here, we shoot out rays
from the camera:

4

With Basic Shading with a Point light for a point x on a triangle, with normal n and direction −→ω l from x to
the point light, we have:

E =
Φ

4πr2
cosθ =

Φ

4πr2
(n · −→ω l)

with the term Φ
4πr2 being the point light source irradiance (point / sphere has surface area of 4πr2).

Combined with the diffuse shading from above, we get the following term for diffuse shading:

Ld(x,
−→ω) = kdE = kd

Φ

4πr2
(n · −→ω l)

with kd being the material parameter.

6 Direct Illumination

6.1 Rendering Equation

The Rendering Equation describes the energy equilibrium from the outgoing light to the emitted + reflected
light:

Lo(x,
−→ω o) = Le(x,

−→ω o) + Lr(x,
−→ω o) = Le(x,

−→ω o) +

∫
H2

fr(x,
−→ω i,

−→ω o)Li(x,
−→ω i)cosθd

−→ω i

In direct illumination, the Li term comes directly from an emitter, which gives us:

Li(x,
−→ω) = Le(r(x,

−→ω),−−→ω)

For simplicity, we will ignore the emission, i.e. Le = 0, which then gives us the following term to compute direct
illumination in the hemispherical form:

Lr(x,
−→ω r) =

∫
H2

fr(x,
−→ω i,

−→ω r)Le(r(x,
−→ω i)−−→ω i)cosθid

−→ω i

We can estimate the integral by using Monte Carlo Integration. However, by sampling from the hemisphere (H2

above), we often have many samples evaluating to zero, because they don’t hit a light source directly. Instead,
we can integrate over the solid angle Ω subtended by the light (i.e. only sample from the part of the hemisphere
that ”sees” the light).

For integrating over surfaces, we need some different notation, setting:

• Li(x,
−→ω i) = Li(x, y)

• Lr(x,
−→ω r) = Lr(x, z)

• fr(x,
−→ω i,

−→ω r) = fr(x, y, z)

• d−→ω i =
|cosθo|
||x−y||2 dA

With this, we can then write the integral in its surface area form:

Lr(x, z) =

∫
A

fr(x, y, z)Li(x, y)G(x, y)dA(y) =

∫
A

fr(x, y, z)Li(x, y)V (x, y)
|cosθi||cosθo|
||x− y||2

dA(y)

with G(x, y) being the geometry term consisting of the visibility term V which is 1 if y is visible from x and 0
otherwise. The fraction is the chance that a photon emitted from x will hit y, which decreases as the points
move away from each other (denominator) or face away from each other (numerator).

With this, we can now simply use the area of the emitter Ae to integrate over emissive surfaces only, which
is more efficient.

6.2 Light Sources

We can have various light sources, which can be categorized as Delta Lights, which create hard shadows (point
light, spot light, directional light) and Area / Shape lights, which create soft shadows (quad lights, sphere
light, mesh light).

5

6.2.1 Point light

A point light is usually defined using a point P and emitted power Φ. We have omnidirectional emission from
a single point, and therefore can write the integral over the point light as:

Lr(x, z) =
Φ

4π
fr(x, p, z)V (x, p)

|cosθi|
||x− p||2

6.2.2 Spot light

A spot light is usually defined using a point P and a directionally dependent radiant intensity I:

Lr(x, z) = I(p, x)fr(x, p, z)V (x, p)
|cosθi|

||x− p||2

6.2.3 Directional light

A directional light is defined using a direction −→ω and radiance Ld(
−→ω) coming from direction −→ω :

Lr(x,
−→ω r) = fr(x,

−→ω ,−→ω r)V (x,−→ω)Ld(
−→ω)cosθ

6.2.4 Quad light

A quad light has finite area, which creates soft shadows. Here we just integrate over the area of the quad, as
above.

6.2.5 Sphere light

A sphere light is defined using a point p, radius r and emitted power Φ. The sphere has a finite area of 4πr2.
To sample the sphere, we either can sample the sphere uniformly over the whole area (many points not visible
from shading point), over the area of the visible spherical cap (not ideal as emitted radiance is weighted by the
cosine term) or uniformly sample the solid angle subtended by the sphere.

6.2.6 Mesh light

A mesh light is an emissive mesh where every surface point emits given radiance Le. We have a total area of∑
A(k).

6.3 Environment Lighting

Using environment lighting, we avoid having to model the whole environment by representing it by one or
more images. These images ”wrap” the virtual scene, serving as a distant source of illumination:

Lr(x,
−→ω r) =

∫
Ω

fr(
−→ω i,

−→ω r)Li(x,
−→ω i)cosθid

−→ω i =

∫
Ω

fr(
−→ω i,

−→ω r)Lenv(
−→ω i)V (x,−→ω i)cosθid

−→ω i

When sampling from the environment map, we want to distribute the weights in such a way that we sample
mostly from the ”bright” parts of the environment map, as these parts represent ”light sources”.

7 Monte Carlo integration

We can approximate the integrals of the reflection equations using Monte Carlo integration:∫
D

f(x)dx =

∫
D

[f(x)
p(x)

]
p(x)dx ≈ 1

N

N∑
i=1

f(xi)

p(xi)
= FN

where xi are random variables distributed according to the PDF p(x).

The Monte Carlo Estimator is an unbiased estimator, which means that the expected value equals the
integral. Extension to higher dimensions is straightforward (as the number of samples is independent of dimen-
sion), but the convergence is slow, with a runtime of O(1√

N
, which means reducing the error by a factor of 2

requires 4 times as many samples.

6

7.1 Sampling random variables

Usually, we have random variables uniformly distributed in the interval [0, 1], i.e. if we sample 2 random vari-
ables, we sample uniformly from a square.

For shapes, we can use Rejection Sampling, which samples uniformly from [0, 1] and then inserts these values
into the formula for the shape (e.g. a sphere) and then checks if the result lies on the shape. This however is
inefficient, as most sampled points are rejected!

For many shapes however, we can define a warping, which is a function which transforms the samples from
the square to samples from the other shape (e.g. from a disk). This requires us to write this warp function,
however it is much more efficient as we’re not wasting any samples.

7.2 Importance sampling

By using importance sampling, we can reduce the variance of our sampling method. Usually, we have our

estimator FN = 1
N

∑N
i=1

f(Xi)
p(Xi)

for the integral
∫
f(x)dx.

When we assume that the PDF is proportional with some factor c to the function with p(x) = cf(x), we get:∫
p(x)dx = 1 =⇒ c =

1∫
f(x)dx

with which we get the estimator f(Xi)
p(Xi)

= 1
c =

∫
f(x)dx, which means we have a zero variance estimator.

The issue with this approach however is, that setting p(x) = cf(x) requires knowledge of the integral that
we are trying to solve.

However, if the pdf is similar to the integrand, the variance can be significantly reduced. The common strategy
here is to sample proportional to the integrand:

7.2.1 Combining multiple strategies

We can combine multiple importance sampling methods to get a better result, however we cannot simply average
the two different estimators, as variance is additive and therefore does not work.
Instead, we sample from the average pdf:

1

N

N∑
i=1

f(xi)

0.5(p1(xi) + p2(xi))

7.3 Sampling arbitrary distributions

7.3.1 Inversion method

The inversion method includes the following steps:

1. Compute the CDF P (x) =
∫ x

0
p(x′)dx′

2. Compute the inverse P−1(x)

3. Obtain an uniformly distributed random number ξ

4. Compute Xi = P−1(ξ)

7

7.3.2 Jacobian method

We can use the Jacobian method for a random variable X ∼ px(x) and a transformation T to find the
distribution of Yi = T (Xi). The new density is:

py(y) = py(T (x)) =
px(x)

|JT (x)|

where |JT (x)| is the absolute value of the determinant of the Jacobian matrix of T. The Jacobian matrix J is
the matrix containing all first-order partial derivatives of the transformation matrix T .

7.4 Multiple Importance Sampling

When using Monte Carlo integration, variance is high when the PDF is not proportional to the integrand. In
the worst case, we have rare samples with huge contributions, which lead to ”firefly” artifacts. For example, in
the following term, such a firefly would appear if f(xi) is large, but the corresponding PDF p(xi) is small:

⟨FN ⟩ = 1

N

N∑
i=1

f(xi)

p(xi)

The approach in Multiple Importance Sampling now is that if at least one sampling strategy covers each part
of the integrand well, then combining them should reduce artifacts. For that, we can combine e.g. 2 strategies
weighted:

⟨FN1+N2⟩ = 1

N1

N1∑
i=i

w1(xi)
f(xi)

p(xi)
+

1

N2

N2∑
i=1

w2(xi)
f(xi)

p(xi)
with w1(x) + w2(x) = 1

We can extend this term to arbitrary many strategies, the important restriction is that the weights always sum
up to 1.

To choose the weights, we can use the balance heuristic:

ws(x) =
Nsps(x)∑
j Njpj(x)

8 Microfacet Theory

When using microfacets, we assume the surface consists of tiny facets, where the total area being illuminated
is relatively large compared to the size of the microfacets. A facet can be perfectly specular or diffuse:

The general microfacet model is the following:

F (−→ω i,
−→ω o) =

F (−→ω h,
−→ω o) ·D(−→ω h) ·G(−→ω i,

−→ω o)

4|(−→ω i · n)(−→ω o · n)|
−→ω h =

−→ω i +
−→ω o

||−→ω i +
−→ω o||

In the above term, F is the Fresnel coefficient, D is the Microfacet distribution and G is the Shadowing
/ masking term. A good distribution to use for the D term is the Beckmann Distribution.
The shadowing / masking term depends on the chosen distribution, and it represents a microfacet being shadowed
and / or masked by other microfacets.

9 Advanced Camera Models

In the most basic version, we use a pinhole camera for the ray tracer, i.e. a camera with an infinitesimally
small aperture. With that, we don’t have a focal plane, and every point in the scene is in focus. When using a
thin lens camera, we have points which are on the focal plane, and others which are not on the focal plane

8

and therefore appear blurry.

The depth of field is the range of distances from which objects appear in focus. Objects outside this range
appear blurry. To compute the image, we need to integrate over pixel area and the aperture area. Typically, the
lens geometry is defined by the radius of the aperture and the distance to the focal plane.

10 Global Illumination

10.1 Light paths

We want to express light paths in terms of the surface interactions that have occurred. A light path is a chain
of linear segments, joining at event ”vertices”.

For this, we can use Heckbert’s Classification, which classifies the events as follows (using a regex-style
for classifying the number of occurences of the events):

• L: a light source

• E: the eye / camera

• S: a specular reflection

• D: a diffuse reflection

• k+: one of more of event k

• k∗: zero or more of event k

• k?: zero or one k events

• (k|h): a k or an h event

From this, we get the following types of illumination:

• Direct illumination: L(S|D)E

• Indirect illumination: L(D|S)(D|S) + E

• Classical(Whitted-style) ray tracing: LDS ∗ E

• Full global illumination: L(D|S) ∗ E

An example of various light paths:

10.2 Recursive Monte Carlo ray tracing

For direct illumination, it’s sometimes better to estimate it by sampling emissive surfaces. As such, we estimate
direct illumination separately from indirect illumination and then adding the two. For this, we shoot shadow
rays (direct lighting, towards light sources) and gather rays (indirect lighting). This gives us the term we want
to estimate:

L(x,−→ω) = Le(x,
−→ω) + Ld(x,

−→ω) + Li(x,
−→ω)

where Le is the emitted color at x, Ld is the direct lighting and Li the indirect lighting. For example, the first
”iteration” of the recursive algorithm looks like the figure on the left, and the figure on the right contains the
next iterations:

This approach however has the downside that the formulation is recursive and grows geometrically.

9

10.3 Path tracing

To remedy the previously mentioned issue, we can use path tracing, where we don’t shoot n rays at each hit
location to get the recursive values, but only 1 ray. This means we estimate the integral with an one -sample
estimator:

L(x,−→ω) ≈ Le(x,
−→ω) +

fr(x,
−→ω ′,−→ω)L(r(x,−→ω ′),−−→ω ′)cosθ′

p(−→ω ′)

We can also include the shadow rays as before, to sample the direct illumination (right image below).

To improve quality of the indirect illumination estimation, we then can shoot multiple rays per pixel. To stop
recursion, we use russian roulette, where we chose some termination probability q ∈ (0, 1) and a random
number ξ. We terminate is ξ < q, and otherwise compute a new probability based on the value of ξ (such that
the probability decreases for increasing path length).

10.4 Light tracing

For light tracing, we shoot multiple paths from light sources and search for the importance (which is ”em-
mited” from sensors and describes the response of the sensor to radiance traveling within a differential beam).
The name can be a bit misleading, it refers to what we follow (trace) & where we start, not what we search
for. This works especially well for caustics. However, e.g. glass spheres appear black with this approach, and
therefore we wish to combine path tracing and light tracing to get the best of both.

10.5 Photon mapping

Photon mapping is a two-pass algorithm:

• Pass 1: Tracing of photons from light sources and caching the photons in a photon map

• Pass 2: Tracing from the eye and approximating indirect illumination using the previously gathered photons

10

In the first pass, we shoot out photons from the light sources, that carry power (flux), which is a fraction of the
light sources power. When a photon hits a diffuse surface, we store it in the photon map. To end the recursion,
we again use russian roulette to terminate the recursion. The photons keep their flux if they are allowed to
continue, but only a certain number of photons are allowed to continue. E.g. if we have 300 photons with power
1.0 W, which hit a surface with reflectance of 50%, we will have 150 photons continuing with 1.0 W.

In the second pass, for each shading point we hit during the path tracing, we find the closest k photons and
approximate the radiance using the density of the photons (by using the area that these k photons were found
in. If we have a larger area, the photons are less dense and the indirect lighting is less intense).

10.5.1 Progressive photon mapping

To improve the quality of images rendered with photon mapping, we can use progressive photon mapping.
Here, we repeat the previously mentioned two passes, however in each iteration we use a radius that is smaller
than the radius from before to gather photons from (please note that for this, we need to use the variant where
we have a fixed radius to gather photons from, and not the variant where we gather a fixed number k of photons).

11 Participating media

When modeling a participating medium, we usually do not model the individual particles of the medium ex-
plicitly, but describe the properties statistically using various coefficients and densities. This is a concept similar
to that of the microfacet models, where we use a distribution to model the facets instead of explicitly modeling
them in the surfaces.

We can have homogeneous media (with coefficients staying the same through the medium) which are either
infinite or bounded by a surface, and we can have heterogeneous media (with spatially varying coefficients),
which are often procedural generated.

The main quantity we’re interested in is radiance. In contrast to previous models, where the radiance of a
ray stayed constant, here the radiance changes along the ray if it goes through a participating medium, and as
such we have:

Li(x,
−→ω) ̸= Lo(r(x,

−→ω),−−→ω)

11.1 Transmittance

We can define the expression of transmittance between x and y as follows.

First, we have the scattering coefficient σs(x) as well as the absorption coefficient σa(x), which can be added
together to get the extinction coefficient σt(x) = σs(x) + σa(x).

Then, for a homogeneous volume, we have:

Tr(x, y) = e−σt||x−y||

For a heterogeneous volume (with spatially varying σt), we have:

Tr(x, y) = e−
∫ ||x−y||
0 σt(t)dt

12 Camera models

12.1 Depth of field

The depth of field is the distance between the nearest and the farthest objects that appear in acceptably sharp
focus:

DOF ≈ 2u2Nc

f2

where c is the given circle of confusion, f the focal length, N the F-number (aperture) and u the distance to
subject.
The circle of confusion describes the optical spot on the sensor caused by a cone of light rays not coming to
perfect focus when imaging a point source.

11

12.2 Chromatic aberration

Using lenses consisting of spherical surfaces introduces aberration, which means that different rays or wavelengths
have different focus points. For chromatic aberration, we have the issue that the different wavelengths have other
focus points, which means some wavelenghts will appear to be ”closer” to the lens and as such appear smaller.

12.3 Typical color imaging pipeline

Please note that the objective of a camera is to create good looking images. Generally, there are many non-
linear effects and unknown elements in the image pipeline, which is why in general, cameras cannot be used as
light-measuring devices.

13 Multi-view geometry and 3D reconstruction

13.1 Pinhole camera

A camera projection model for a pinhole camera is a transformation using homogenous coordinates, mapping
3D points to coordinates in image space (2D coordinates):

p2D =

u
v
1

 ∼

p11 . . . p14
...

. . .
...

p31 . . . p34

x
y
z
1

 = P3D

The transformation can also be decomposed into intrinsic parameters (first part) and extrinsic parameters (second
part). f denotes the focal length, c is the optical center (intersection of the optical axis with the image plane),
r denotes rotation and t translation of the camera:

p2D =

u
v
1

 ∼

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

x
y
z
1

 = P3D

13.2 Camera calibration

To calibrate a camera, we usually use a calibration pattern (e.g. a checkerboard), from which we know the
structure and size of. All the points on this pattern are on the same plane, and as such we can simplify the
equations from above by setting z = 0. This also means that we can remove the corresponding column in the
extrinsic matrix, from which we now obtain a simplified version:

p2D =

fx 0 cx
0 fy cy
0 0 1

r11 r12 t1
r21 r22 t2
r31 r32 t3

x
y
1

The product of the simplified intrinsic and extrinsic parameters is also called a Homography. This term can be
used to relate two images on the same plane in space. For two points a1 and a2, we have the following relation:

a2 ∼ Ha1 =⇒

x2

y2
z2

 =

H11 H12 H13

H21 H22 H23

H31 H32 H33

x1

y1
z1

12

To be able to perform a camera calibration, we need at least 3 different views of the plane, and for each view we
need at least 4 points to compute the homography.

13.3 3D reconstruction pipeline

In keypoint detection, we find points of interest in the image, which are at well-defined positions in image
space, stable under local and global perturbations and can be detected efficient. Usually, we use points where
the brightness changes significantly or edges of geometries in the images.

In the structure from motion (SFM) step, we want to be able to estimate the 3D structure from multi-
ple images. The issue here is, that we might have outliers, which can negatively impact the quality of the
reconstruction. We can use the RANSAC (Random Sample Consensus) algorithm to remove outliers. This is
done by fitting some points to a model (e.g. 2 points to a line) and then solving which points are in these model
parameters (e.g. which points are within a certain threshold to the line).

14 Image-based rendering / Light fields

Modeling complex scenes can be quite time-consuming, and as such we’d like to be able to capture real objects
with computer vision, and display these models in 3D rendering. However, CV usually fails to capture every detail
of models, and even if we manage to capture a perfect representation of an object, we still face the issue that the
rendering is only an approximation of the real world, and as such also cannot render a perfect representation.

14.1 Textures from images

When we want to generate textures from images, we first need to reconstruct the 3D representation of the object,
such that we can map a point on the image to the 3D representation, and then map this point to the UV coordi-
nate of the texture. However, we have some issues, for example a point on the surface is obstructed in some images.

Basically, we can formulate this as a minimization problem, where we want to minimize the difference between
the estimated color value and all the values obtained from the color images:

min
∑
i

||T (u, v)− Ti(u, v)||

where T is the estimated values and the Ti values are the values obtained from the color images.

As mentioned before, we don’t have the same values for all Ti values, for example we might have more in-
formation in the image from a certain viewing angle. For this, we introduce a general penalty λ, which takes
into account the view-dependent effects. We also introduce a smoothing loss to the end of the term, such that
we end up with:

min
∑
i

λ||T (u, v)− Ti(u, v)||+ ||∇T ||

13

14.2 Depth based rendering

14.2.1 Forward mapping

In forward mapping, we use the depth map of the original input image to project every pixel (color value) to
a virtual scene, and we then can project every pixel in that virtual 3D scene to the new camera, which is located
at a different position:

This however introduces some issues, as we have a non-surjective map, especially because of occlusions and
perspective changes.

14.2.2 Backward mapping

Resolving the issues that arise in forward mapping would be possible if we had a depth map at the virtual camera.
As such, we could backtrack every pixel and discretization would become a non-issue. We can do this by forward
projecting the depth map (instead of the color map as in forward mapping), merging the depth map of several
cameras and applying some filtering.
This gives us a depth map for the virtual camera, which we then can use to map the depth-point of the virtual
camera to the color value of the original image.

15 Low-discrepancy point distributions

14

16 Denoising Monte Carlo renderings

Usually, images rendered using Monte Carlo techniques have some noise, especially when using a low sam-
ple count. Increasing the sample count usually improves the quality of the final image, but also increases the
runtime by a lot. We therefore wish to be able to apply a denoising procedure to the images to remove such noise.

To do this, we want a flexible (arbitrary filter support) and robust (few denoising artifacts) filter. To do
this, we need to be able to compute weights for the denoising.

16.1 Bilateral filter

The bilateral filter is not a robust filter, as it still leaves some noise after denoising. In general, we have a pixel
p and want to compute the weight w(p, q) of a neighbouring pixel q.

In the bilateral filter, we use a generalized distance d, which has a spatial (in pixels, exact) and range (dif-
ference in value u of the pixel, noisy) component:

d2(p, q) =
(u(p)− u(q))2 − 2σ2

ϵ+ k22σ2

The spatial component defines the range r of neighbouring pixels we want to include, pixels outside this range
have weight 0. With this formula, weights of neighbouring pixels decrease exponentially with the distance to the
pixel p. σ is the variance, which we remove from the numerator, as otherwise the term is biased by the variance
(such that we get an unbiased difference of the values of both pixels). k2 is an user-defined parameter, and ϵ is
a very small number to avoid division by zero errors.

16.2 Non-local means filter

The non-local means filter is a generalization of the bilateral filter, where instead of computing the distance
between two pixels p and q, we define a radius f around these pixels, and for each pair of pixels from the patches
P (p) and P (q), we compute the distance. We then average this, to get the final result for distance between p
and q. The computation of the distance between a pair of pixels is still done the same as in the bilateral filter
(which basically is a special case of this filter with f = 0.

17 Material acquisition

17.1 Colorimetric calibration

To calibrate the colors of a camera, we take a picture of a color calibration checker, which has a number of colors
printed on it, where we have a ground truth value for each of the colors (i.e. we know what each color should
map to):

We then can build a linear system to estimate the function that maps the measured values (by the camera) to
the ground truth values:

A24×3 · x3×3 = b24×3

where A are the ground truth X,Y, Z values, and b are the measured R,G,B values. By solving for x. we obtain
the function to map the measured values to the color space we have.

We can use this computed matrix by mapping the measured values to the X,Y, Z color space, by inverting

15

it: CRBG′2XY Z = x−1. Please note that this transformation maps the RBG values to the XY Z space, and not
to a specific space such as rRGB for example. We do this because any RGB color space may be obtained by a
simple (known) linear transformation, i.e. we can then just use these known transformations to map our XY Z
values to any RGB space we want.

17.2 High dynamic range

When taking a picture of a scene, it might be overexposed (bright areas lack details as everything is white) or
underexposed (dark areas lack details). To remedy this, we can use high dynamic range images, where we
take multiple pictures of the scene with varying exposure time, and then fuse the images together to get the final
exposure of the images.

18 Inverse rendering

Inverse rendering is the term given to the estimation of scene characteristics given a single photo or a set of
photos of the scene.

In the scene characteristics, we usually know the Transformations and Cameras (positions) from geomet-
ric calibration (color calibration [17.1] and camera calibration [13.2]). What we only know partially are the
lights, materials and especially the geometry.

In the light transport equation (see also 6.1), we leave out the term for the emitted light for now, which
gives us the following term to work with:

Lo(x,
−→ω o, λ, t) =

∫
H2

fr(x,
−→ω i,

−→ω o, λ, t)Li(x,
−→ω iλ, t)(

−→ω i · −→n)d−→ω i

Please note that (−→ω i · −→n) is equal to the cosθ term from before. λ is the wavelength of the light we’re looking
at, and t is time.

We have to make some assumptions about the light, which is called active illumination:

• The incident radiance is known and controllable (i.e. we can control the light sources)

• Assumptions about the incident radiance: Li(x,
−→ω i, λ, t) → Li(

−→ω i(t), λRGB(t))

– x is removed from term, i.e. the lighting does not depend on the spatial position

– The incident direction and radiance of the lights are known

– Indirect illumination is considered negligible

18.1 Photometric stereo

Photometric stereo is the term used for the process of getting geometry from photos. We have the following
situation with out equation from before:

As mentioned before, the Li and
−→ω i terms are know because we control the incident light. The BRDF and the

normal −→n are unknown.

We want to vary the direction of the incident light Li and from the measurements at a certain point to be
able to calculate the surface normal −→n at that point.

In addition to the assumptions above, we need some more assumptions:
First, we want delta-directional lighting Li(x,

−→ω i, λRGB = Li(
−→ω i) = 13, i.e. the light is normalized with

strength 1 at every place.
Second, we assume the surface has a lambertian BRDF, i.e. a perfect diffuse reflectance, i.e. the BRDF is
constant (and only depends on the incoming light): fr(x,

−→ω i,
−→ω o, λRGB = fr(λRGB) =

ρd,RBG

π

16

With these assumptions, the equation from above drastically simplifies to the product of the lambertian BRDF
with the dot product of the normal and the light direction:

I = Lo(x,
−→ω o, λRGB) =

ρd,RBG

π
(−→n · −→ω i)

As we assume that we don’t have any indirect lighting or subsurface scattering, the value of every pixel is
independent. Therefore we can solve the following linear system per channel and per pixel, with n being the
number of light sources (i.e. ”pictures taken with light at a different angle”):

An×3 · x3×1 = bn×1 with A =

ω
T
i,1
...

ωT
i,n

 b =

Iλ,1...
Iλ,n

 x =
ρd,λ
π

· −→n T

i.e. A contains the directions of all the n light sources, b are the measured intensities for the pixel, and x is the
normal, scaled by the color of the measured value.

To solve this, we need at least 3 lighting conditions (3 photos with different light), as the normal is made
of 2 unknowns n → (θ, ϕ) and the third unknown is the scaling ρd.

From the x =
ρd,λ

π · −→n T from before, we can extract the normal and the ρd,λ as:

ρd,λ = ||x|| −→n =
x

||x||

18.2 Photometric stereo with arbitrary BRDFs

In the previous section, we made the assumption that the BRDF is a lambertian BRDF, i.e. we have a perfect
diffuse reflection. However, this is usually not the case, and we have a non-linear equation, which does not have
a closed-form solution.

18.2.1 Gradient descent

To solve such a system, we can use gradient descent, for example to use the Blinn-Phong BRDF. For this, we
need to be able to calculate the derivative. We can do this manually (symbolic), which is possible, but it’s tedious
and error-prone. For more complex BRDFs, it gets really complicated and therefore is not really recommended.

Other approaches to compute the derivative are using finite differences or automatic differentiation.

Using finite differences is however quite error-prone, and suffers from numerical errors.

19 Acceleration Data Structures

Ray-surface intersection is at the core of every ray tracing algorithm. We can use the brute force approach,
where we check the intersection of every ray with every primitive, however this leads to many unnecessary ray-
surface intersection tests.

In such a naive approach, we have a cost of O(Nx · Ny · No, i.e. (number of pixels) · (number of objects),
which assumes 1 ray per pixel. Typically, the runtime is measured per ray, i.e. we have a naive runtime of
O(No), i.e. it’s linear with the number of objects. This is extremely inefficient, and leads to really long rendering
times.

19.1 Acceleration techniques

We can either use spatial subdivision or object subdivision to accelerate the ray-primitive lookups. In the
following sections, some will be described with a bit more detail.

19.2 Axis Aligned Bounding Box

An axis aligned bounding box (AABB) is a struct containing the minimal coordinate (”lower left corner”)
and the maximal coordinate (”upper right coordinate”) of the bounding box of the object (aligned to the xy
axis). To then compute the intersection, we can compute the intersection of ”slabs”, as outline in the following
algorithm:

17

19.3 Spatial sorting

Using spatial sorting, we can reduce the number of cells we have to look at. First, we preprocess the geometry
by decomposing the space into disjoint regions, storing pointers to overlapping objects within each region. During
rendering, we traverse through the regions overlapping the ray, and intersect the objects in each region until a
hit is found.

19.3.1 Uniform grids

In an uniform grid, we apply the following steps for preprocessing:

1. Compute the bounding box of the whole scene

2. Determine the resolution of the grid (usually ∼ 3 3
√
n)

3. insert the objects into the cells

4. Rasterize the bounding box of each object

5. Prune the empty cells (i.e. cells without any objects)

6. Store the reference for each object in the cell

The algorithm to traverse the uniform grid then is:

1. Incrementally rasterize the ray

2. Compute the intersection with objects in each cell

3. Stop when intersection in current voxel is found

While uniform grids are easy to implement and building the data structure is fast, they do not adapt to non-
uniform scenes (e.g. when we have one huge object and one small object). We can use hierarchical grids to
resolve this, however there are better approaches which will be explained in the following sections.

19.4 Spatial hierarchies

Instead of using an uniform grid, we use spatial hierarchies, where we apply a classical divide-and-conquer
approach. The most commonly used variations are the octree, the kd-tree and the bsp-tree:

19.4.1 KD-tree

In a KD-tree, we compute the bounding box, and then recursively split the cells using axis-aligned planes, until
we hit a termination criteria (e.g. maximum depth or minimum number of objects). This results in a binary tree
structure, where only the leaf nodes store references to geometry. The internal nodes store the split axis (x, y or
z), the split position and references to the child nodes.

18

To traverse such a KD-tree, we can simply traverse the binary tree. If we’re at an internal node, we’re at a
split and go to the correct child node, and if we’re in a leaf node we can perform the intersection test on the
items in the leaf node.

19.4.2 Octrees

Similar to KD-trees, however for octrees we recursively divide the cells into 8 equal sub-cells (i.e. the split is
always at the center of the cell, and as such we do not need to store the position of the split). Traversal is similar
to KD-trees, however octrees are easier to implement and have cheaper costs for insertion and deletion. On the
downside, they usually divide the space less efficient than KD-trees.

19.4.3 BSP-tree

Finally, in a BSP-tree, we split the space by arbitrary planes. This gives us the most flexibility abd we need to
check for fewer intersections, but it’s also more complex to implement than Octrees of KD-trees.

19.5 Bounding volume hierarchies

Instead of using spatial hierarchies, we can also use bounding volume hierarchies (BVH) around the objects
using simple volumes, such that we can reject the intersection checks faster. We can choose from bounding
volumes with many shapes, however it’s always a trade off between simplicity of the shape and the ”wasted
space” inside of the volume (e.g. a sphere is a really simple shape, where the intersection check is easy, however
it might waste a lot of space if the object inside of it is not spherical). An example of some possible shapes:

We then can build a hierarchical tree (BHV), which we can traverse to find intersections (e.g. a sphere around
all objects in the scene, which then contains child spheres and so on).

20 Point based representations

So far, we’ve seen representation of geometry using either triangles or polynomials. However, both approaches
have their drawbacks, which is why we want a different representation using points.

The main advantage is that we don’t separate geometry and appearance (e.g. textures) and that it’s a nat-
ural representation for many 3D acquisition systems.

20.1 Surface model

Surface modeling is the computation of a continuous surface from a discrete set of points P .

19

To compute such a surface, we can use the moving least squares (MLS) approximation. The surface is
defined as a stationary set of projection operator ΨP ⇒ implicit surface model:

SP =
{
x ∈ R3|ΨP (x) = x

}
i.e. the set of all points which ΨP (MLS operator) projects onto themselves. Any point in ”outer space” (not on
the MLS surface) will be projected onto the surface.

To compute this, we use a weighted least squares optimization, using a Gaussian weighting function.

One downside of using this approach is that we lose details and the solution might degrade.

To remedy this, we can apply the spherical MLS, which fits a sphere into the points instead of fitting a
plane into the points (like for normal MLS).

20

